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Paulo Goldfeld: Balancing Neumann-Neumann

� Balancing Neumann-Neumann for

– Incompressible Elasticity

– Compressible Elasticity

– Stokes

– Navier-Stokes by Newton-Krylov (in
progress)

– Neumann-Neumann-like nonlinear precondi-
tioner for global nonlinear problem (planned)

� Implemented in PETSc, run on large clusters
such as Chiba City.

� Question: in PETSc LU for local Stokes or in-
compressible Elasticity breaks down with stan-
dard ordering, tricks needed. Other direct solvers
(SuperLU) ? Possibly adapted for saddle point
structure?

� Most CPU time: factorization of the local prob-
lems at start-up. Iterative methods do not seem to
be a viable alternative.

� Theory by Widlund and Pavarino



Jing Li: FETI-DP

� FETI-DP for

– Stokes

– Oseen

– Navier-Stokes by Newton-Krylov

– FETI-like preconditioner for global
nonlinear problem (planned)

� Sequential code in C++, implementation
in PETSc planned.

� Theory by Li (2 short papers).



Olof Widlund

� Theory for

– Neumann-Neumann

– FETI-DP methods (paper with Kla-
wonn and Dryja, to appear)

– Mortar methods

– ...

� for

– Stokes (paper just accepted)

– Incompressible and Compressible
Elasticity (almost complete paper)

–H(div), H(curl) (a few years ago)

– ...

� Nonlinear preconditioners (with: Xiao-
Chuan Cai).



Previous work in our group for H(div)
andH(curl)

� Lower order (usually first) Ńed́elec ele-
ments

� Toselli: Overlapping Schwarz for
H(curl) (2D, 3D)

� Toselli and Hiptmair: Multilevel for
H(div) andH(curl)

� Toselli, Widlund, and Wohlmuth: Itera-
tive substructuring forH(curl) (2D)

� Toselli: Neumann-Neumann for
H(curl)

� Toselli and Klawonn, Toselli and
Rapetti: FETI forH(curl)

�Wohlmuth, Toselli, and Widlund: Itera-
tive substructuring forH(div) (2D,3D)



Bernhard Hientzsch: High order
Maxwell

� Fast direct solvers for rectangular do-
mains.

� Direct substructuring methods for do-
mains composed out of rectangular ele-
ments

� Helmholtz decomposition solvers

� Overlapping Schwarz methods

� Iterative substructuring methods (in
progress), threedimensional implemen-
tation (in progress), ...

� Codes in MATLAB and some in C using
MPI for parallelization.

� Theory by Hientzsch extending analysis
by Toselli.



(�u; v) + (� curlu; curl v) = f (v)

� Spectral Elements: Spectral Methods
(high accuracy, special structure) + Fi-
nite Element Methods (geometric flexi-
bility) + Numerical Integration

� DiscretizationKu = Mf has block ten-
sor product structure, allows fast compu-
tation ofw = Kv, and, for rectangular
domains, fast direct solvers. Those are
needed as local solvers and global coarse
solvers.

� Domain Decomposition approach leads
to quasi-optimal and parallel methods for
more complicated and larger examples.

� Preconditioners seem to be relatively ro-
bust with respect to moderate deforma-
tion of the geometry and mesh



Spectral Nédélec Elements for H(curl)

� H1-conforming elements: spurious eigenvalues
and unphysical continuity conditions

� Néd́elec [Num. Math. ’80, ’86]: H(curl) con-
forming elements, d.o.f.: edge, face and interior
moments; Monk and others:hp-, hN -extension

� Ben Belgacem and Bernardi [Math. Comp. ’99]:
Spectral element method for Maxwell’s equation.

� We use spectral element type nodal degrees of
freedom, variable order Gauss-Lobatto-Legendre
quadrature, only tangential continuity.

� We construct mapping between spectral element
and Ńed́elec degrees of freedom for different de-
grees, and analyze the interpolation properties
and the stability of the local splitting for the
Néd́elec interpolant.



The model problem

� Maxwell inE:

�@2tE + �@tE + curl

�
1

�
curlE

�
= @tji

� Implicit time integration:

�u + curl(� curl u) = f

� Variational form:

(�u;v)L2 + (� curl u; curl v)L2 = f(v)

� GLL quadrature:

(�u;v)GLL + (� curl u; curl v)GLL = fGLL(v)

� Discretized form on one element (2D):�
Mx
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�
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�
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�

� Subassembling on rectangular arrangement with
appropriate degrees with tangential continuity
gives system matrix of the same structure



Modelproblem in 3D

Stiffness matrix has the form:
0
@
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C31 C32 C33

1
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C11 = Mx 
 (�My 
Mz + �(Ky 
Mz +My 
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yxz
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 Iz
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Dy 
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C23 = �Mx 
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My 
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with M one-dimensional mass matrix,K one-
dimensional Laplace,D and ~D combinations of
derivative and mass matrices,P transposition of the
3D array.



Algorithms:

� Direct block tensor solver

� Direct substructuring solver

� Algorithmic components for DDM

� Overlapping Schwarz Preconditioners

� Helmholtz decomposition solvers



Direct block tensor solver (2D)

� Eliminate one component in block tensor product
system in both components to obtain generalized
Sylvester matrix equation in one component

(A
B + C 
D)ui = f

� Solve Sylvester matrix equation by:

– Transformation to special form, use fast di-
agonalization method [Lynch et al, Num.
Math ’64] (sometimes ill-conditioned eigen-
systems)

– Work on generalized Sylvester equation, use
Hessenberg or Schur forms [Gardiner et al,
ACM TOMS ’92, Kågstr̈om, Poromaa ACM
TOMS ’96]

� Setup takesO(n3) time, per right hand side
O(nd+s) with s 2 [0; 1] depending on the fast
matrix-matrix multiplication used.



Direct substructuring solver

� Form local Schur complements

� Subassemble local Schur complements
to Schur complement system on tangen-
tial components on element interfaces

� Subassemble right hand side for the
Schur complement system on the inter-
faces

� Solve the Schur complement system on
the interface

� Compute interior values in each spectral
element by one tangential value bound-
ary problem solve per element



Domain decomposition methods:
algorithmic components

� Compute residual

� Solve local problems with different
boundary conditions

� Solve low-order global problem

For direct and iterative substructuring meth-
ods :

� Form local Schur complement

� Compute right hand side for Schur com-
plement system

� Apply local Schur complement or its in-
verse to a vector



Overlapping Schwarz method:
implementation in 2D

� Define overlapping subregions
0i;Æ � 
. Sev-
eral ways: extending coarse elements or subdo-
mains, or vertex-centered. Most of our computa-
tions:2 � 2 vertex centered domain decomposi-
tion.

� Local spaces and solvers: take basis functions
associated to GLL points in
0i;Æ (submatrix) .
Elementwise-overlap: standard tangential value
solve on 2x2 elements.Vi � N D

II;0
N (TH).

� Coarse space: low-order (spectral) Néd́elec ele-
ments.V0 = N D

II;0
N0

(TH)



Overlapping Schwarz method:
overlapping subregions

Vertex centered domain decomposition:



Helmholtz decomposition solvers

� f = (�I + � curl curl)u

� Usef = cf(f) + df(f) = grad q + curl�, q
scalar,� scalar (2D), vector (3D)

� On cf(u) operates as�I, on df(u) operates as
�I + ��.

� Suggests method like: computecf(f) (Laplace),
computecf(u) = 1

�
cf(f), find df(u) by solv-

ing Helmholtz-type equation on components
(2D,3D) or potential (2D) with appropriate b.c.

� For some boundary conditions (e.g., natural), this
gives in 2D a spectrally convergent solver (nu-
merically); for others (f.i. essential = tangential),
only algebraic convergence (corner and edge ef-
fects) which can be improved but not (yet?) made
exponential



Some numerical examples

� Rectangular domain: convergence, some
timings

� L-shape domain: direct substructuring
solver

� Overlapping Schwarz Preconditioners:
results for one- and two-level methods



Direct solvers: Rectangular domain

5� 5 spectral elements, degree: (N �N ,
N�N ). Different numerical integrations for
the mass matrix: exact integration and diag-
onal mass matrix. Block tensor and Inter-
face Schur complement solvers.
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Direct methods: Timings, block tensor
solver

5 � 5 spectral elements of degreeN . Exact
element matrices.
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Direct methods: Timings, block tensor
solver

M�M spectral elements of degree10�10.
Exact element matrices.
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Direct methods: Timings, Schur
interface solver

5 � 5 spectral elements of degreeN . Exact
element matrices.

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

N

C
P

U
 ti

m
e 

in
 s

ec
on

ds

total CPU time
setup on element
subassembling
Schur and local solves



Direct methods: Timings, Schur
interface solver

M�M spectral elements of degree10�10.
Exact element matrices.
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Direct methods: Summary of
comparison (rectangular domain)

� IncreasingN : in exponential convergence indis-
tinguishable, for largerN Schur solvers slightly
more accurate.

� Schur solver: out of memory atM = 10 andN >
10. Tensor solver runs in memory for much larger
examples.

� Tensor solver: most time in subassembling, com-
puting eigenbases and inverses. Actual solve is
very fast (< 2s for N = 50, M = 5, < 1s for
M = 10, N = 10)

� Schur solve: most time in computing rhs, solv-
ing Schur system and local systems. (Needs to
be done for each rhs.)

� Block tensor solver twice as fast, per rhs seven
times as fast forN = 50,M = 5. 20 times as fast
atM = 10, N = 10, per rhs more than 100 times
as fast.



Schur interface solver on L-shaped
domain

Exact solution:
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Schur interface solver on L-shaped
domain

Error of the solution, for degree 10:
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Overlapping Schwarz method:
Numerical results in 2D

Comparison of different methods for� = � = 1,
M = N = 10:

# of levels iter �est(K) jjerrorjj1 tCPU in s
(no pc) 3580 1.44e+06 5.73e-05 448.6
one 31 38.2 3.21e-06 7.6
two (N0 = 2) 15 4.93 3.78e-06 3.8
two (N0 = 3) 15 4.52 9.95e-07 3.8
two (N0 = 4) 15 4.51 9.48e-07 3.9
two (N0 = 5) 14 4.49 1.88e-06 3.8



Overlapping Schwarz method: Results
for one-level methods

One-level method, using2 � 2 vertex cen-
tered domain decomposition, varying num-
ber of spectral elements of degree10� 10:
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Comparison of different methods for the2� 2 vertex
centered domain decomposition for� = � = 1,N = 10.

# of levels iter �est(K) jjerrorjj1 tCPU in s
M = 20

one 58 142.9 2.05e-06 74.4
two (N0 = 2) 15 4.84 1.46e-06 19.6
two (N0 = 3) 14 4.84 1.49e-06 18.9
two (N0 = 4) 15 4.85 5.56e-07 20.7

M = 30

one 85 316.0 1.59e-06 251
two (N0 = 2) 15 4.91 1.03e-06 47.2
two (N0 = 3) 15 4.93 3.74e-07 47.7
two (N0 = 4) 15 4.93 3.11e-07 49.7

M = 40

two (N0 = 2) 15 4.95 7.24e-07 98.3
two (N0 = 3) 15 4.96 2.66e-07 102.2
two (N0 = 4) 15 4.96 2.15e-07 106.0



Overlapping Schwarz method: Results
for two-level method

Two-level method, using2 � 2 vertex cen-
tered domain decomposition, varying num-
ber of spectral elements, degree10 � 10,
N0 = 3.
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Overlapping Schwarz method: Results
for two-level method

Two-level method, using2 � 2 vertex cen-
tered domain decomposition,10� 10 spec-
tral elements, degreeN �N , N0 = 2.
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Domain decomposition methods:
condition number bound

Fixed and generous overlap:

�(Tas2) � C(Nc + 1)2
max(�; �)

min(�; �)

Minimal overlap:
(vertex-centered:Æ=h � N�1, 
 � 0:5,
extended subdomain:Æ=h � N�2, 
 � 1)

�(Tas2) � C(Nc + 1)2N


max(�; �)

min(�; �)

 
1 +

�
H

Æ

�2
!

Limit cases� ! 0 and� ! 0 allow differ-
ent bounds, independent of� or �, respec-
tively.



Proof of the condition number estimate

� Uses the abstract Schwarz method
framework [e.g., Smith et al ’96]

�We use exact solvers, implying! = 1.

� Largest eigenvalue is bounded by num-
ber of colorsNC for overlapping subdo-
mains (4 in the2� 2 case) plus one.

� Only part requiring work and thought:
lower bound for smallest eigenvalue.
Done by exhibiting splittingu =

P
ui

and estimating (from above)C2 inP
a(ui;ui) � C2a(u;u)

� Extension of Toselli [Numer. Math. ’00]
to spectral case (i.e.,N -dependence)



Condition number estimates: required
estimates

We reduced theN -dependence in the condi-
tion number estimate to the following three
required estimates:

� Interpolation estimate on div-free
H(curl) with polynomial curl:

jj(I��
ND;I
N )wjj0 � Chf1(N )jj curlwjj0

� L2-stability of local splitting:

jj�
ND;I
N (�iu)jj0 � Cf2(N )jj�iujj0

� curl-stability of local splitting:

jj curl
�
�

ND;I
N (�iu)

�
jj0 � Cf3(N)jj curl(�iu)jj0

implied byL2-stability of local splitting
in a RT type space.



Domain decomposition methods:
condition number bound

� f1(N) = 1 + C(�)N�1+� � 1 + C(�). In two
dimensions, and possibly (unproven) in three di-
mensions,f1(N) = C(�)N�1+f(�).

� For generous overlapf2(N) = f3(N) = 1 (ana-
lytic and numerical result).

� For minimal overlapÆ=h � N�2, f2(N) =
f3(N) = N
, with 
 � 1 (numerical result).

Inverse of smallest eigenvalue is bounded by:

max
�
CNc

�
1 + H

Æ

�
; Cmax(�;�)

min(�;�) (1 +Ncf
2
2 (N));

Cmax(�;�)
min(�;�)

�
1 +Ncf

2
3 (N)

�
1 +

�
H+hf1(N)

Æ

�2���
.

In the moment we run extensive numerical tests to
empirically determine the exponents ofN andH

Æ
in

the condition number, and try to prove thef2; f3 re-
sult for small overlap.



Work in progess, planned extensions

� Improve theory, prove more estimates.

� Implementing and analyzing other do-
main decomposition methods, such as it-
erative substructuring methods andmor-
tar elements.

� Extending methods to three dimensions.

� Extend methods to jumping or seperable
or tensor�,�.

� Numerical tests for complex case, radi-
tion boundary conditions, indefinite case
or high wave number.

� Implementation of mapped spectral ele-
ments.


